

Welcome to InfraRed’s documentation!

Contents:

	Introduction

	Quickstart
	Basic Usage Example
	Provisioning

	Installing

	OSPD Quickstart

	Setup
	Supported distros

	Prerequisites

	Virtualenv

	Installation

	Configuration
	Additional settings

	Private settings

	Virthost machine

	Using InfraRed
	General workflow
	Passing parameters

	Provisioners
	Beaker

	Foreman

	Openstack

	Virsh

	Installers
	Packstack

	OpenStack director

	Testers
	Tempest

	Scripts
	Archive

	Plugins
	Add new Plugins

	Plugin Input
	External setting trees

	InfraRed input arguments

	Extra-Vars

	Advanced features
	Tags
	Breakpoints

	OverCloud Image Update

	Custom repositories

	Custom/local tempest tester

	Scalability

	UnderCloud testing

	Virthost packages/repo requirements
	Virsh

	UEFI mode related binaries

	Specifications
	Plugin Input

	Commands and subcommands

	Infrared settings structure

	Options and Groups
	Options configuration

	Groups

	Shared groups

	Options sources

	Contact Us
	Team:

	GitHub:

	Contributors Guide
	Sending patches

	Release Notes
	v1.1.0
	New Features

	Bug Fixes

Indices and tables

	Index

	Module Index

	Search Page

Introduction

InfraRed is tool used for automated deployments of various OpenStack environments. It does not try to be focused on CI use-cases only, it is focused on automation in general. It is written in Python 2.7 and using Ansible [https://www.ansible.com] as deployment backend. Python dependencies are handled by pip [https://pip.pypa.io/en/stable/] package manager.

Workflow is divided into 3 separated steps:

	Provisioning (ir-provisioner tool)

	Installation (ir-installer tool)

	Testing (ir-tester tool)

Please see Setup page first or proceed to guide for impatient (Quickstart).

Quickstart

Note

This guide assumes:

	Latest version of Python 2 [https://www.python.org/downloads/] installed

	Virtualenv is used

	Prerequisites are set-up

	We strongly urge to read all Setup instructions first

	Quickstart is assuming you are use Fedora as main distro for deployment and provisioning (RHEL needs private adjustments)

Clone InfraRed stable from GitHub:

git clone https://github.com/rhosqeauto/InfraRed.git -b stable

Note

This is documentation for stable version. Check in top left corner of this page if your stable branch tag matches version of documentation. If not true, let us know!

Install from source using pip:

cd InfraRed
pip install --upgrade pip setuptools
pip install .
cp ansible.cfg.example ansible.cfg

Warning

While most topologies will work ‘out of the box’, some topologies (like external ceph, netapp, etc) requires internal credentials which we cannot upload upstream. Users with access to redhat internal network can run the following command to download a file contains some credentials & other sensitive data, other user will have to provide this data explicitly everywhere there is a reference to private variables.

wget --no-check-certificate https://url.corp.redhat.com/infrared-private -O infrared-private.yml

Basic Usage Example

Provisioning

In this example we’ll use virsh provisioner in order to demonstrate how easy and fast it is to provision machines using InfraRed.
For basic execution, the user should only provide data for the mandatory parameters, this can be done by two ways:

	CLI

	INI File

CLI

To list all parameters (for virsh) and their description, run:

ir-provisioner virsh --help

Notice that the only three mandatory paramters in virsh provisioner are:

	--host-address - the host IP or FQDN to ssh to

	--host-key - the private key file used to authenticate to your host-address server

	--topology-nodes - type and role of nodes you would like to deploy (e.g: controller:3 == 3 VMs that will act as controllers)

We can now execute the provisioning process by providing those parameters through the CLI:

ir-provisioner virsh --host-address=$HOST --host-key=$HOST_KEY --topology-nodes="undercloud:1,controller:1,compute:1" -e @infrared-private.yml

Note

The value of the topology-nodes option is a comma-separated string in a “type:amount” format. Please check the settings/topology dir for a complete list of the available types. (In the example above, three nodes will be provisioned: 1 undercloud, 1 controller & 1 compute)

That is it, the machines are now provisioned and accessible.

Note

You can also use the auto-generated ssh config file to easily access the machines

ssh -F ansible.ssh.config controller-0

INI File

Unlike with CLI, here a new configuration file (INI based) will be created.
This file contains all the default & mandatory parameters in a section of its own (named ‘virsh’ in our case), so the user can easily replace all mandatory parameters.
When the file is ready, it should be provided as an input for the ‘–from-file’ option.

Generate INI file for virsh provisioner:

ir-provisioner virsh --generate-conf-file virsh_prov.ini

Review the config file and edit as required:

virsh_prov.ini

[virsh]
host-key = Required argument. Edit with any value, OR override with CLI: --host-key=<option>
host-address = Required argument. Edit with any value, OR override with CLI: --host-address=<option>
topology-nodes = Required argument. Edit with one of the allowed values OR override with CLI: --topology-nodes=<option>
topology-network = default.yml
host-user = root

Note

host-key, host-address and topology-nodes don’t have default values. All arguments can be edited in file or overridden directly from CLI.

Note

Do not use double quotes or apostrophes for the string values
in the configuration ini file. Infrared will NOT remove those quotation marks
that surround the values.

Edit mandatory parameters values in the INI file:

[virsh]
host-key = ~/.ssh/id_rsa
host-address = my.host.address
topology-nodes = undercloud:1,controller:1,compute:1
topology-network = default.yml
host-user = root

Execute provisioning using the newly created INI file:

ir-provisioner virsh --from-file=virsh_prov.ini -e @infrared-private.yml

Note

You can always overwrite parameters from INI file with parameters from CLI

ir-provisioner virsh --from-file=virsh_prov.ini --topology-nodes="undercloud:1,controller:1,compute:1,ceph:1" -e @infrared-private.yml

Done. Quick & Easy!

Warning

Users without access to redhat internal network will have to provide a url to a guest image using the “–image-url” option

Installing

Now let’s demonstrate the installation process by deploy an OpenStack environment using redhat OSPD (OpenStack Director) on the nodes we have provisioned in the previous stage (The deployment in this case will be ‘virthost’ type, see how to setup Virthost machine).

Just like in the provisioning stage, here also the user should take care of the mandatory parameters (by CLI or INI file) in order to be able to start the installation process. Lets provide the mandatory parameter (deployment-files) and choose to work with RHOS version 8, this time using the CLI only:

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt --product-version=8 --product-core-version=8 -e @infrared-private.yml

Note

Please notice that the deployment-file parameters requires a full path of the deployment files dir.

Done.

OSPD Quickstart

InfraRed provides a quick solution to deploy OSPD with a pre-configured undercloud from latest build for testing/POC.

	Provision: No undercloud node should be provisioned in the provisioning stage.

ir-provisioner virsh --host-address=$HOST --host-key=$HOST_KEY --topology-nodes="controller:1,compute:1" -e @infrared-private.yml

	Install: InfraRed will notice that no UC is provided and will build one from a snapshot of an installed UC from latest available build.

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt --product-version=9 --product-core-version=9 -e @infrared-private.yml

For detailed information on the usage of the various installers, provisioners & tester continue to Using InfraRed

Setup

Supported distros

Currently supported distros are:

	Fedora 22, 23

	RHEL 7.2 (best effort only, deprecated)

	RHEL 7.3

Warning

Python 2.7 and virtualenv are required.

Prerequisites

Warning

Sudo or root access is needed to install prerequisities!

General requirements:

sudo dnf/yum install git gcc libffi-devel openssl-devel sshpass

Note

Dependencies explained:

	git - version control of this project

	gcc - used for compilation of C backends for various libraries

	libffi-devel - required by cffi [http://cffi.readthedocs.io/en/latest/]

	openssl-devel - required by cryptography [http://cryptography.readthedocs.io/en/latest/]

	sshpass - required by wait_for ansible module

Closed Virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/] is required to create clean python environment separated from system:

sudo dnf/yum install python-virtualenv

Ansible requires python binding for SELinux [http://docs.ansible.com/ansible/intro_installation.html#managed-node-requirements]:

sudo dnf/yum install libselinux-python

otherwise it won’t be able to run modules with copy/file/template functions!

Note

libselinux-python is in Prerequisites but doesn’t have a pip package. It must be installed on system level.

Warning

Ansible requires also libselinux-python installed on all nodes using copy/file/template functions. Without this step all such tasks will fail!

Virtualenv

InfraRed shares many dependencies with other OpenStack products and projects. Therefore there’s a high probability of conflicts with python dependencies, which would result either with InfraRed failure, or worse, with breaking dependencies for other OpenStack products.
When working from source, it is recommended to use python virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/] to avoid corrupting the system packages:

virtualenv .venv
source .venv/bin/activate

Warning

It is mandatory that latest pip is used (especially in when working with RHEL)!

pip install --upgrade pip setuptools

Note

On Fedora 23 with EPEL repository enabled, RHBZ#1103566 [https://bugzilla.redhat.com/show_bug.cgi?id=1103566] also requires:

dnf install redhat-rpm-config

Installation

Clone stable branch from Github repository:

git clone https://github.com/rhosqeauto/InfraRed.git -b stable

Install InfraRed from source:

cd InfraRed
pip install .

Note

For development work it’s better to install in editable mode and work with master branch

git checkout master
pip install -e .

Configuration

Note

InfraRed only requires explicit configuraion file when non-default values are used.

InfraRed will look for infrared.cfg in the following order:

	Environment variable: $IR_CONFIG=/my/config/infrared.cfg

	In working directory: ./infrared.cfg

	In user home directory: ~/.infrared.cfg

	In system settings: /etc/infrared/infrared.cfg

If no configuration file is supplied, InfraRed will load default values as listed in ``infrared.cfg.example

Set up ansible config [http://docs.ansible.com/ansible/intro_configuration.html] if it was not configured already:

cp ansible.cfg.example ansible.cfg

Additional settings

In InfraRed configuration file, you can adjust where ansible looks for directories and entry/cleanup playbooks:

infrared.cfg.example

 InfraRed configuration file
 # ===========================

 [defaults]
 settings = settings
 modules = library
 roles = roles
 playbooks = playbooks

 [provisioner]
 main_playbook = provision.yml
 cleanup_playbook = cleanup.yml

 [installer]
 main_playbook = install.yml
 cleanup_playbook = cleanup.yml

 [tester]
 main_playbook = test.yml
 cleanup_playbook = cleanup.yml

Private settings

Infrared allows user to define several folders to store settings and spec files. This can be used, for example, to store public and private settings separately. To define additional settings folders edit the settings option in the Infrared configuration file:

[defaults]
settings = settings:private_settings
...

Note

InfraRed tool must be tied to infrastructure at certain level, therefore requires part of configuration not shared publicly. It is assumed this part will be located in private settings.

For more questions please contact us.

Virthost machine

Virthost machine is the target machine where InfraRed’s virsh provisioner will create
virtual machines and networks (using libvirt) to emulate baremetal infrastructure.

As such there are few specific requirements it has to meet.

Generally, It needs to have enough memory and disk storage to hold multiple decent VMs
(each with GBytes of RAM and dozens of GB of disk).
Also for acceptable responsiveness (speed of deployment/testing) just <4 threads or low GHz
CPU is not a recommended choice (if you have old and weaker CPU than current mid-high end mobile
phone CPU you may suffer performance wise - and so more timeouts during deployment or in tests).

Especially, for Ironic (TripleO) to control them, those libvirt VMs need to be bootable/controllable
for iPXE provisioning.
And also extra user has to exist, which can ssh in the virthost and control (restart...) libvirt VMs.

Note

InfraRed is currently attempting to configure or validate all (most) of this but it’s scattered across all provisiner/installer steps.
Due to nature of installers such as OSPd and current InfraRed structure it may not be 100% safe for rerunning
(failure in previous run may prevent following one from succeeding in these preparation steps).
We are currently working on a more idempotent approach which should resolve the above issues (if present).

What user has to provide:

	have machine with sudoer user ssh access and enough resources,
as minimum requirements for one VM are:
	VCPU: 2|4|8

	RAM: 8|16

	HDD: 40GB+

	in practice disk may be smaller, as they are thin provisioned,
as long as you don’t force writing all the data (aka Tempest with rhel-guest instead of cirros etc)

	tested is just RHEL-7.3 as OS, with also CentOS expected to work
	may work with other distributions (best-effort/limited support)

	yum repositories has to be preconfigured by user (foreman/...) before using InfraRed so it can install dependencies
	esp. for InfraRed to handle ipxe-roms-qemu it requires either RHEL-7.3-server channel,
or (deprecated) RHEL-7.2 with OSP<10 channels (10+ is 7.3)

What InfraRed takes care of:

	ipxe-roms-qemu package of at least version 2016xxyy needs to be installed

	other basic packages installed
	libvirt, libguestfs{-tools,-xfs}, qemu-kvm, wget, virt-install

	virt-manager, xorg-x11-apps, xauth, virt-viewer possibly for debugging (or multiple ssh tunnels can be used)

	virtualization support (VT-x/AMD-V)
	ideally with nested=1 support

	stack user created with polkit privileges for org.libvirt.unix.manage

	ssh key with which InfraRed can authenticate (created and) added for root and stack user,
atm they are handled differently/separately:
	for root the infared/id_rsa.pub gets added to authorized_keys

	for stack infrared/id_rsa_undercloud.pub is added to authorized_keys, created/added later during installation

Using InfraRed

General workflow

InfraRed framework is divided into three logically separated stages (tools):

	ir-provisioner

	ir-installer

	ir-tester

You can get general usage information with the --help option:

ir-<stage> --help

Output will display supported options you can pass to ir-<stage>, as well as available positional arguments for current stage (e.g. for provisioner these are foreman, virsh, openstack, ...):

Also, you can invoke help for specific positional arguments (supported provisioners, in this case):

ir-<stage> virsh --help

Note

Positional arguments are generated dynamically from spec files - order and amount might change in time.

Note

Stages are physically separated, you can execute them in mixed (but meaningful) order. Example:

ir-provisioner virsh
ir-installer ospd
ir-tester tempest
ir-installer ospd --scale
ir-tester tempest

Currently, executing different sub-commands of the same stage (i.e. ir-provisioner beaker and then ir-provisioner virsh) is possible
but the user must save the created inventory files (hosts-provisioner) between exectuions as they will overwrite each other

Passing parameters

Note

By nature of the project, many configurable details like passwords, keys, certifcates, etc... cannot be stored in a public GitHub repo.
We keep a private repo for internal Red Hat users that mirrors the settings tree. Using the Multi-settings
feature in infrared.cfg file, InfraRed will search those directories for files missing from the public settings directory.

InfraRed expects that selected workflow (playbook and roles) will be provided with all mandatory parameters. There are several ways to do it:

	Use separate private configuration directory

	Include standalone file(s) containing additional (private) settings as explicit input file(s) (-i or --input parameters), for example:

ir-<stage> --input private.yml

private.yml

 private:
 provisioner:
 beaker:
 base_url: "https://beaker_instance_url/"
 username: "..."
 password: "..."
 ...

	Use command line ir-<stage> --param1 --param2 ...

Note

Best practice is store infrastructure-specific configuration file(s) in private repository and fetch such file(s) before deployment.

Provisioners

For list of supported provisioners invoke:

$ ir-provisioner [<prov_name>] --help|-h

Beaker

Entry point:

playbooks/provisioner/beaker/main.yml

Beaker provisioner is designed to work with instances of Beaker project [https://beaker-project.org] at least version 22.3. It is based custom ansible module built on top of

library/beaker_provisioner.py

script. While Beaker can support working with Kerberos, the usage is still limited, therefore authentication is done using XML-RPC API with credentials for dedicated user.

See appropriate value of ssh_pass for your beaker_username in Website -> Account -> Preferences -> Root Password if you didn’t setup one. For proper XML-RPC calls cert_file must be provided.

Also, for each run you will need to set proper node-specific values:

...
Beaker system:
 --fqdn FQDN Fully qualified domain name of a system
 --distro-tree DISTRO-TREE Distro Tree ID Default value: 71576
...

Foreman

Entry point:

playbooks/provisioner/foreman/main.yml

Warning

Currently, Foreman provisioning supports only the ability to rebuild hosts (without the option change the operating system):

ir-provisioner [...] foreman [...]

Foreman provisioner is designed to work with instances of Foreman project [https://theforeman.org] at least version 1.6.3. It is based custom ansible module built on top of

library/foreman_provisioner.py

Foreman provisioner expects that provisioned node has configured relevant puppet recipies to provide basic SSH access after provisioning is done.

To get more details on how to provision hosts using Foreman:

$ ir-provisioner foreman --help

Openstack

Entry point:

playbooks/provisioner/openstack/main.yml

Provisioner is designed to work with existing instances of OpenStack. It is based on native ansible’s cloud modules [http://docs.ansible.com/ansible/list_of_cloud_modules.html#openstack]. Workflow can be separated into following stages:

	Create network infrastructure

	Create instance of virtual machine and connect to network infrastructure

	Wait until instance is booted and reachable using SSH

Note

Openstack provisioner is tested against Kilo version.

InfraRed interacts with cloud using os-client-config [http://docs.openstack.org/developer/os-client-config] library. This library expects properly configured cloud.yml file in filesystem, however it is possible to position this file in InfraRed’s directory.

clouds.yml

clouds:
 cloud_name:
 auth_url: http://openstack_instance:5000/v2.0
 username: <username>
 password: <password>
 project_name: <project_name>

cloud_name can be then referenced with --cloud parameter provided to ir-provisioner:

ir-provisioner ... --cloud cloud_name ...

Note

You can also ommit the cloud parameter, then InfraRed expects you alredy sourced keystonerc of targeted cloud:

source keystonerc
ir-provisioner openstack ...

Last important parameter is --dns which must be set to point to local DNS server in your infrastructure.

Virsh

Entry point:

playbooks/provisioner/virsh/main.yml

Virsh provisioner is explicitly designed to be used for setup of virtual OpenStack environments. Such environments are used to emulate production environment of OpenStack director instances on one baremetal machine. It requires prepared baremetal host to be reachable through SSH initially. Topology created using virsh provisioner is called “virthost”.

First, Libvirt and KVM environment is installed and configured to provide virtualized environment. Then, virtual machines are created for all requested nodes. These VM’s are used in OSPd installer as undercloud, overcloud and auxiliary nodes.

Please see Quickstart guide where usage is demonstrated.

Cleanup

virsh cleanup will discover virsh nodes and networks on the host and delete them as well as their matching disks.
To avoid cleanup of specific nodes/networks use extra vars ignore_virsh_nodes and ignore_virsh_nets:

ir-provisioner [...] virsh [...] --cleanup \
 --host-address=example1.redhat.com \
 --host-key=~/.ssh/id_rsa \
 --extra-vars ignore_virsh_nodes=MY-NODE-0 \
 --extra-vars ignore_virsh_nets=MY-PERSISTENT-NETWORK

By default, cleanup will only ignore default network (automatically created by libvirt). Overriding the ignore_virsh_nets variable will delete this network unless explicitly specified

Warning

Arguments like images and topology are required by cleanup even though they are never used. This will be fixed in future versions.

Warning

Cleanup won’t install libvirt packages and requirements. If libvirtd service is unavailable, cleanup be skipped

Network layout

Baremetal machine used as host for such setup is called Virthost. The whole deployment is designed to work within boundaries of this machine and (except public/natted traffic) shouldn’t reach beyond. Following layout is part of default setup defined in default.yml [https://github.com/rhosqeauto/InfraRed/blob/master/settings/provisioner/virsh/topology/network/default.yml]. User can also provide his own network layout (example network-sample.yml [https://github.com/rhosqeauto/InfraRed/blob/master/settings/provisioner/virsh/topology/network/network.sample.yml]).

 Virthost
 |
 +--------+ nic0 - public IP
 |
 +--------+ nic1 - not managed
 |
 ... Libvirt VM's
 | |
 ------+--------+ data bridge (ctlplane, 192.0.2/24) +------+ data (nic0)
 | | |
libvirt --+--------+ management bridge (nat, dhcp, 172.16.0/24) +------+ managementnt (nic1)
 | | |
 ------+--------+ external bridge (nat, dhcp, 10.0.0/24) +------+ external (nic2)

On virthost, there are 3 new bridges created with libvirt - data, management and external. Most important is data network which does not have dhcp and nat enabled. This network is used as ctlplane for OSP director deployments (OSPd installer). Other (usually physical) interfaces are not used (nic0, nic1, ...) except for public/natted traffic. External network is used for SSH forwarding so client (or ansible) can access dynamically created nodes.

Virsh provisioner workflow:

	Setup libvirt and kvm environment

	Setup libvirt networks

	Download base image for undercloud (--image)

	Create desired amount of images and integrate to libvirt

	Define virtual machines with requested parameters (--topology-nodes)

	Start virtual machines

Environments prepared such way are usually used as basic virtual infrastructure for OSPd installer.

Note

Virsh provisioner has currently idempotency issues, therefore ir-provisioner virsh ... --cleanup must be run before reprovisioning every time.

Custom images

If you need to provide your own prepared images for virsh provisioner, you can use handy feature overriding “import_url” option:

ir-provisioner ... \
-e topology.nodes.<node name>.disks.disk1.import_url=http://.../image.qcow2 ... \
...

Installers

For list of supported installers invoke:

$ ir-installer [<installer_name>] --help|-h

Packstack

Entry point:

playbooks/installer/packstack/main.yml

Infrared allows to use Packstack installer to install OpenStack:

$ ir-installer --inventory hosts packstack --product-version=8

Required arguments are:

	--product-version - the product version to install

Settings structure

The path for the main settings file for packstack installer:

settings/installer/packstack/packstack.yml

This file provides defaults settings and default configuration options for various packstack answer files. Additional answer options can be added using the the following approaches:

	Using a non default config argument value:

$... --config=basic_neutron.yml

	Using the extra-vars flags:

$... --product-version=8 --extra-vars=installer.config.CONFIG_DEBUG_MODE=no

	Network based answer file options can be selected whether by choosing network backend or by modyfing config with –extra-vars:

$... --product-version=8 --network=neutron.yml --netwrok-variant=neutron_gre.yml

$... --product-version=8 --network=neutron.yml --netwrok-variant=neutron_gre.yml \
 --extra-vars=installer.network.config.CONFIG_NEUTRON_USE_NAMESPACES=n

Both installer.network.config.* and installer.config.* options will be merged into one config and used as the answer file for Packstack.

OpenStack director

Entry point:

playbooks/installer/ospd/main.yml

OSPd deployment in general consists of following steps:

	Undercloud deployment

	Virthost tweaks

	Image management

	Introspection

	Flavor setup

	Overcloud deployment

You can find full documentation at Red Hat OpenStack director [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/].

There are 2 OSPd deployment types currently supported.
The API is the same but different input is required and
different assumptions are made for each deployment type:

	Baremetal (BM)

Normal deployment of openstack where all nodes are physical hosts.

	Users need to provide:

	
	--deployment-files - directory with various files and templates, describing
the OverCloud (such as instackenv.json).

	--undercloud-config - undercloud.conf file. If not provided,
the sample configuration file [http://docs.openstack.org/developer/tripleo-docs/installation/installing.html#installing-the-undercloud]
will be used.

	--instackenv-file - instackenv.json file [http://docs.openstack.org/developer/tripleo-docs/environments/baremetal.html?highlight=instackenv#instackenv-json].

Both paths must be absolute paths:

ir-installer ospd [...] --deployment-files=/absolute/path/to/templates/directory [...] --undercloud-config=/home/myuser/undercloud.conf

The details of such directory can be found under settings tree [https://github.com/rhosqeauto/InfraRed/tree/master/settings/installer/ospd/deployment/example]

	Virthost (VH)

Using virsh provisioner, deploy openstack on virtual machines hosted on a single hypervisor (aka Virthost).

This is a common use-case for POC, development and testing, where hardware is limited.
OSPD requires special customization to be nested on OpenStack clouds, so using local virsh VMs is a common solution.

Expects the following network deployment (created by the virsh provisioner):

	nic1 - data

	
	Referred to as “ctlplane” by OSPd documentation [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/7/html/Director_Installation_and_Usage/]

	Does not have dhcp and nat enabled (OSPd will later take dhcp/nat ownership for this network)

	Used by OSPD to handle dhcp and pxe boot for overcloud nodes

	Later used as primary interface for ssh by InraRed (Ansible)

	Data between compute nodes and Ceph storage (if exists)

	nic2 - management

	
	Internal API for the overcloud services (services run REST queries against these interfaces (for example Neutron/Nova communication and neutron-server/neutron-agent communication))

	Tenant network with tunnels (vxlan/gre/vlan) for internal data between OverCloud nodes. Examples:
	VM (on compute-0) to VM (on compute-1)

	VM (on compute-1) to Neutron Router (on Controller-3)

	nic3 - external

	
	public API for the overcloud services (OC users run REST queries against these interfaces)

	The testers (i.e. Tempest) use this network to execute commands against the OverCloud API

	Routes external traffic for nested VMs outside of the overcloud (connects to neutron external network and br-ex bridge...)

	The testers (i.e. Tempest) use this network to ssh to the VMs (cirros) nested in the OverCloud

To build a Virthost deployment, use the preset deployment-files provided in settings:

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt [...]

InfraRed will generate undercloud.conf and instackenv.json configuration files if not provided explicitly.
See Quickstart guide for more details.

Hostnames

To simplify node management, InfraRed uses shorter names than the default names OSPD gives
the OverCloud nodes. For example, instead of overcloud-cephstorage-0 the node will be called ceph-0.
The full conversion details are here [https://github.com/rhosqeauto/InfraRed/blob/master/roles/installer/ospd/overcloud/hostname/vars/main.yml].

A user can provide customized HostnameMap [http://docs.openstack.org/developer/tripleo-docs/advanced_deployment/node_placement.html?highlight=hostnameformat#custom-hostnames]
using --overcloud-hostname argument:

ir-installer [...] ospd [...] --overcloud-hostname=special_hostnames.yml [...]

special_hostnames.yml

 HostnameMap:
 ceph-0: my_main_ceph_node
 ceph-1: another_storage_node
 controller-2: SPECIAL_MACHINE
 compute-0: BIG_HYPERVISOR

Note that the default naming template is the one described above
and not the one in the tripleo documentation (overcloud-novacompute-0).

Note

The naming convention and customization can be completely overridden if the --deployment-files
input contains a file called hostnames.yml following the tripleo guidlines [http://docs.openstack.org/developer/tripleo-docs/advanced_deployment/node_placement.html]

Testers

Note

Inventory file (hosts) should have tester group with 1 node in it.
In ospd this is usually the undercloud. In packstack this is usually a dedicated node.

For list of supported testers invoke:

$ ir-tester --help

Tempest

Note

InfraRed uses a python script to configure Tempest. Currently that script is only available in
Red Hat’s Tempest fork [https://github.com/redhat-openstack/tempest], so InfraRed will clone that repo
as well in order to use that script.

Use --tests to provide a list of test sets to execute. Each test set is defined in
settings tree [https://github.com/rhosqeauto/InfraRed/tree/master/settings/tester/tempest/tests]
And will be executed separately.

To import Tempest Plugins from external repos, tests files should contain plugins dict.
InfraRed will clone those plugins from source and install them. Tempest will be able to discover
and execute tests from those repos as well.

settings/tester/tempest/tests/neutron.yml

name: neutron
test_regex: "^neutron.tests.tempest"
whitelist: []
blacklist: []
plugins:
 neutron:
 repo: "https://github.com/openstack/neutron.git"

Scripts

Archive

This script will create a portable package which can be used to access an environment deployed by InfraRed from any
machine. The archive script archives the relevant SSH & inventory files using tar. One can later use those files
from anywhere in order to SSH and run playbook against the inventory hosts.

To get the full details on how to use the archive script invoke:

$ ir-archive --help

Basic usage of archive script:

$ ir-archive

Note

Unless supplying paths to all relevant files, please run this script from the InfraRed project dir

This creates a new tar file (IR-Archive-[date/suffix].tar) containing the files mentioned above while de-referencing local absolute paths of the SSH keys so they can be accessed from anywhere.

Usage examples:

	Untar the archive file:

tar -xvf IR-Archive-2016-07-11_10-31-28.tar

Note

Make sure to extract the files into the InfraRed project dir

	Use the SSH config file to access your provisioned nodes:

ssh -F ansible.ssh.config.2016-07-11_10-31-28 controller-0

	Execute ansible Ad-Hoc command / Run playbook against the nodes in the archived inventory file:

ansible -i hosts-2016-07-11_10-31-28 all -m setup

	Use the archived files with InfraRed:

mv ansible.ssh.config.2016-07-11_10-31-28 ansible.ssh.config
ir-installer --inventory hosts-2016-07-11_10-31-28 ospd ...

Plugins

Plugins are essentially Ansible projects that use InfraRed to expose a predifined UI

Add new Plugins

There are two steps that should be done when adding a new plugin to InfraRed:

	
	Creating a specification file:

	InfraRed uses ArgParse wrapper module called ‘clg’ in order to create a parser that based on spec file
(YAML format file) containing the plugin options.
The spec file should be named as the new plugin name with ‘.spec’ extension and located inside the plugin dir
under the InfraRed ‘setting’ dir.
For more details on how to use this module, please see the Specifications documentation.

	
	Creating settings files.

	Settings files are files containing data which defines how the end result of the playbook execution will be
looked like. Settings file are file in YAML format, end with ”.yml” extension. Those files located under the
plugin’s dir which itself located under the ‘settings’ dir in the InfraRed project’s dir.
The end result of the playbook execution is based on the data created by merging of several settings files together
with other values, all are received by the user.
When adding a new plugin, there is a need to create those settings files containing the needed data for the
playbook execution.

Plugin Input

External setting trees

InfraRed builds settings tree (YAML dict-like structures) that are later passed to Ansible
as varibales. This tree can be built upon pre-existing YAML files (with -i/--input) ,
or be overridden post creation by other pre-existing files and/or sets of key-value arguments.

The merging priority order is:

	Input files

	Settings dir based options

	Extra Vars

InfraRed input arguments

InfraRed extends the clg and argpars packages with the following types
that need to be defined in .spec files:

	Value: String values
absolute path. For the argument name is “arg-name” and of subparser “SUBCOMMAND” of command “COMMAND”, the default

	YamlFile: Expects path to YAML files. Will search for files in one of the configured settings directories before trying to resolve absolute path. If the argument name is “arg-name” and of subparser “SUBCOMMAND” of command “COMMAND”, the default
search path would be:

{settings_dir1,...,settings_dirN}/COMMAND/SUBCOMMAND/arg/name/arg_value

	Topology: Provisioners allow to dynamically define the provisioned
nodes topology. InfraRed provides several
‘mini’ YAML files to describe different roles: controller, compute,
undercloud, etc...
These ‘mini’ files are then merged into one topology file according to the
provided --topology-nodes argument value.

	The --topology-nodes argument can have the following format:

	
	--topology-nodes-controller:1,compute:1

	--topology-nodes-controller:1

	--topology-nodes-controller:3,compute:1,undercloud:1

	InfraRed will read dynamic topology by following the next steps:

	
	Split the topology value with ‘,’.

	Split each node with ‘:’ and get pair (role, number). For every pair
look for the topology folder (configured in the infrared.cfg file) for
the appropriate mini file (controller.yml, compute.yml, etc). Load the
role the defined number of times into the settings.

Note

The default search path for topology files is
{settings_dir(s)}/provivisioner/topology. Users can add their own topology
roles there and reference them on runtime

These arguments will accept input from sources in the following priority
order:

	Command line arguments:
ir-provision virsh --host-address=some.host.com --host-user=root

	Environment variables: HOST_ADRRESS=earth.example.com ir-provision virsh --host-user=root

	Predefined arguments in ini file specified using --from-file option:

ir-provision virsh --host-address=some.host.com --from-file=user.ini

cat user.ini
[virsh]
host-user=root
host-key=mkey.pm

Note

Do not use double quotes or apostrophes for the string values
in the configuration ini file. Infrared will NOT remove those quotation marks
that surround the values.

	Defaults defined in .spec file for each argument.

Note

The sample ini file with the default values can be generated with:
ir-povision virsh --generate-conf-file=virsh.ini. Generated file will contain
all the default arguments values defined in the spec file.

Arguments of the above types will be automatically injected into settings
YAML tree in a nested dict from.

Example:
The input for ir-COMMAND and argument --arg-name=arg-value maps to:

COMMAND:
 arg:
 name: "arg-value"

“arg-value” can be a simple string or be resolved into a more advanced
dictionary depending on the argument type in .spec file

Extra-Vars

Set/overwrite settings in the output file using the ‘-e/–extra-vars’
option. There are 2 ways of doing so:

	
	Specific settings: (key-value form)

	-e provisioner.site.user-a_user

	
	Path to a settings file: (starts with @)

	-e @path/to/a/settings_file.yml

The -e/--extra-vars can be used more than once.

Advanced features

Tags

Advanced usage sometimes requires partial execution of the ospd playbook. This can be achieved with
Ansible tags [http://docs.ansible.com/ansible/playbooks_tags.html]

List the available tags of the ospd playbooks:

ir-installer [...] ospd [...] --ansible-args list-tags

Execute only the desired tags. For example, this will only install the UnderCloud and download OverCloud images:

ir-installer [...] ospd [...] --ansible-args "tags=undercloud,images"

Breakpoints

Commonly used tags:

	undercloud

	Install the UnderCloud.

	images

	Download OverCloud images and upload them to UnderCloud’s Glance service.

	introspection

	Create instackenv.json file and perform introspection on OverCloud nodes with Ironic.

	tagging

	Tag Ironic nodes with OverCloud properties.

	overcloud_init

	Generate heat-templates from user provided deployement-files and from input data.
Create the overcloud_deploy.sh accordingly.

	overcloud_deploy

	Execute overcloud_deploy.sh script

	overcloud

	Do overcloud_init and overcloud_deploy.

	inventory_update

	Update Ansible inventory and SSH tunneling with new OverCloud nodes details (user, password, keys, etc...)

Common use case of tags is to stop after a certain stage is completed.
To do this, Ansible requires a list of all the tags up to, and including the last desired stage.
Therefore, in order to stop after UnderCloud is ready:

ir-installer [...] ospd [...] --ansible-args --ansible-args tags="init,dump_facts,undercloud"

Or, in as a bash script, to stop after $BREAKPOINT:

FULL_TAG_LIST=init,dump_facts,undercloud,virthost,images,introspection,tagging,overcloud,inventory_update
LEADING=`echo $FULL_TAG_LIST | awk -F$BREAKPOINT '{print $1}'`
ir-installer [...] ospd [...] --ansible-args --ansible-args tags=${LEADING}${BREAKPOINT}

OverCloud Image Update

OSPD creates the OverCloud nodes from images. These images should be recreated on any new core build.
However, this is not always the case. To updates that image’s packages
(after download and before deploying the Overcloud), to match RH-OSP core bits build,
set --images-update to yes:

ir-installer [...] ospd [...] --images-update=yes

Note

This might take a while and sometimes hangs. Probably due to old libguestfs packages in RHEL 7.2.
For a more detailed console output of that task, set --images-update to verbose.

Custom repositories

Infrared allows to add custom repositories to the UnderCloud when you’re running OSPD, after installing the default repositories of the OSPD release.
This can be done passing through --extra-vars with the following key:

	ospd.extra_repos.from_url which will download a repo file to /etc/yum.repos.d

	Using ospd.extra_repos.from_url:

Create a yaml file:

repos.yml

 installer:
 extra_repos:
 from_url:
 - http://yoururl.com/repofile1.repo
 - http://yoururl.com/repofile2.repo

Run ir-installer:

ir-installer --extra-vars=@repos.yml ospd

	Using ospd.extra_repos.from_config

Using this option enables you to set specific options for each repository:

repos.yml

 installer:
 extra_repos:
 from_config:
 - { name: my_repo1, file: my_repo1.file, description: my repo1, base_url: http://myurl.com/my_repo1, enabled: 0, gpg_check: 0 }
 - { name: my_repo2, file: my_repo2.file, description: my repo2, base_url: http://myurl.com/my_repo2, enabled: 0, gpg_check: 0 }
 ...

Note

As you can see, ospd.extra_repos.explicity support some of the options found in yum_repository module (name, file, description, base_url, enabled and gpg_check). For more information about this module, visit Ansible yum_repository documentation [https://docs.ansible.com/ansible/yum_repository_module.html].

Run ir-installer:

ir-installer -e @repos.yml ospd

Custom/local tempest tester

You might have a specific version of tempest to test locally in a particular directory, and you want to use it.
Infrared allows you to use this instead of the default git repository. To do so, all you need to do is pass the key tester.local_dir as extra-vars to ir-tester:

Run ir-tester:

ir-tester tempest --extra-vars tester.local_dir-/patch/for/your/tempest

Scalability

Infrared allows to perform scale tests on different services.

	Currently supported services for tests:

	
	compute

	ceph-storage

	swift-storage

	To scale compute service:

Deployment should have at least 3 compute nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/post_install/scale_compute.yml

It will scale compute nodes down to 1 and after that scale compute node back to 3.

	To scale ceph-storage service:

Deployment should have at least 3 ceph-storage nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/post_install/ceph_compute.yml

It will scale compute nodes down to 1 and after that scale compute node back to 3.

	To scale swift-storage service:

Deployment should have at least 3 swift-storage nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/post_install/swift_compute.yml

Note

Swift has a parameter called min_part_hours which configures amount of time that should be passed between two rebalance processes. In real production environment this parameter is used to reduce network load. During the deployment of swift cluster for further scale testing we set it to 0 to decrease amount of time for scale.

UnderCloud testing

Usually, all tempest tests are run from the UnderCloud, against OverCloud, while you might want test UnderCloud services (e.g. ironic).
The following cookbook uses InfraRed to run Tempest tests against the UnderCloud.

	
	We want an explicit “tester” node to avoid running tests on the same node as the UnderCloud.

	Use “ironic” node instead of “undercloud”. It’s the same but doesn’t have the role of “tester”.
Rename “controller” node into “test-vm” to avoid misunderstanding and update it’s parameters to match with “baremetal” flavor.:

ir-provisioner -d virsh -v -o provision.yml \
 --topology-nodes=ironic:1,controller:1,tester:1 \
 --host-address=$HOST \
 --host-key=$HOME/.ssh/rhos-jenkins/id_rsa \
 --image=$IMAGE \
 -e @private.yml \
 -e provisioner.topology.nodes.controller.cpu=1 \
 -e provisioner.topology.nodes.controller.disks.disk1.size=41G \
 -e provisioner.topology.nodes.controller.memory=4096 \
 -e provisioner.topology.nodes.controller.name=test-vm

	
	As we don’t want the full OSPD installation, we will use explicit Tags to do only certain parts:

	
	Undercloud - will install UnderCloud

	Images - installs or builds OverCloud images

	Ironic - performs all required actions before introspection (including assignment of the kernel and ramdisk)

	Virthost - enables “virthost” specific tasks in case of “virsh” provisioning:

ir-installer --debug ospd -v --inventory hosts \
 -e @provision.yml \
 -e @private.yml \
 -o install.yml \
 --deployment-files=$PWD/settings/installer/ospd/deployment/virt \
 --product-version=10 \
 --product-core-version=10 \
 --ansible-args="tags=undercloud,images,virthost,ironic"

	
	We want prepare environment for ironic tests:

	
	update baremetal flavor with cpu_arch

	create initial tempest.conf file using predefined template

	enable ironic inspector

	enable fake and pxe_ssh drivers in ironic

	make desired neutron network shared

	install rhos-release repos into “tester” node

	configure data network on “tester” node:

ansible-playbook -vvvv -i hosts -e @install.yml \
 playbooks/installer/ospd/post_install/add_nodes_to_ironic_list.yml \
 -e net_name=ctlplane \
 -e driver_type=pxe_ssh \
 -e rc_file_name=stackrc

	
	Finally run the Ironic tempest plugin tests [https://github.com/openstack/ironic-inspector/tree/master/ironic_inspector/test/inspector_tempest_plugin]::

	Run ir-tester:

ir-tester --debug tempest -v \
 -e @install.yml \
 --tests=ironic_inspector \
 -o test.yml

Virthost packages/repo requirements

Virsh

UEFI mode related binaries

According to usage UEFI with QEMU [https://fedoraproject.org/wiki/Using_UEFI_with_QEMU] there is only one way
to get the UEFI mode boot working with VMs, that often requires by Ironic team due to lack of hardware or impossibility
to automate mode switching on baremetal nodes.

	Add repo with OVMF binaries:

yum-config-manager --add-repo http://www.kraxel.org/repos/firmware.repo

	Install OVMF binaries:

yum install -y edk2.git-ovmf-x64

	Update QEMU config adding the following to the end of the /etc/libvirt/qemu.conf file:

nvram = [
 "/usr/share/edk2.git/ovmf-x64/OVMF_CODE-pure-efi.fd:/usr/share/edk2.git/ovmf-x64/OVMF_VARS-pure-efi.fd"
]

	Restart libvirt service:

systemctl restart libvirtd

Specifications

InfraRed “drives” Ansible through a Plugin’s playbooks (and roles) in the following manner:

ir-XXXer YYYer [...]

Where XXX is the command (provision, install, or test), and YYY is the plugin subcommand (virsh, ospd, openstack, tempest, etc...)

	Each command executes a matching playbook (at playbooks/XXX.yml) with a generated set of extra vars [http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line]
as plugin input.

	That “top” playbook calls (via “include”) to the subcommand‘s playbook at playbooks/XXXer/YYY.yml

Plugin Input

InfraRed exposes several types of arguments via it’s CLI to accept user-input before execution.
It generates a python-dict input and merges it with a dict of defaults defined in YAML format.

If the subcommand is called YYY, InfraRed will search for its input definitions in settings trees
in a directory called YYY.

Infrared uses special files (in YAML format) to describe plugin CLI interface.
These files are called specifications (spec’s) and have .spec extension.

	The main idea of specification is to describe:

	
	all the possible options we can pass to the plugin

	any default values for the options

	required and optional options

	limitation for certain options, like choosing option value from the predefined list of allowed values

Infrared parses and merges all the spec files under the settings folders and pass
all the defined options to the argparse module which is then used for cli options parsing.

Specification parser is derived from ‘clg’ module homepage [http://clg.readthedocs.org/en/latest/].

Commands and subcommands

Infrared uses the positional arguments (subcommands) to extend functionality
for the ir-* cli commands.

ir-provisioner [..] openstack [...]
 ^---------^ ^-------^
 command subcommand

For example, the provisioner command aggregates several subcommands which define specific provisioners like virsh, openstack, beaker, foreman, etc.

The command specification files are stored under the settings/<command_name>/ folders.

Command specification should start from the root of the spec file without any additional keywords:

options: [....]
groups: [....]

All the subcommand specifications files are stored under the settings/<command_name>/<subcommand_name> folders.

Subcommands can be defined with the subparsers keyword followed by the subcommand name:

subparsers:
 virsh:
 options:
 [....]
 groups:
 [....]

It’s recommended to define subcommands in the seprate .spec file.

Infrared settings structure

[settings]
 |
 +-> [installer]
 | |
 | +-> [ospd]
 | | |
 | | +-> ospd.spec
 | | |
 | | +-> ospd.yml
 | |
 | +-> [packstack]
 | | |
 | | +-> packstack.spec
 | | |
 | | +-> packstack.yml
 | |
 | +-> installer.spec
 |
 +-> [provisioner]
 | |
 | +-> [....]
 | |
 | +-> provisioner.spec
 | |
 | +-> provisioner.yml
 |
 +-> base.spec

	The base.spec file contains:

	
	groups and options common for all the commands

	reusable groups (shared_groups)

	The command specification files installer/installer.spec and provisioner/provisioner.spec contain:

	
	specific options and groups for a given command. For example, by default ir-provisioner command has the –debug flag to debug information into console.

	The subcommand specification files installer/ospd/ospd.spec and installer/ospd/packstack.spec contain:

	
	subcommand name and description

	specific options and groups for a given subcommand

	The subcommand default files installer/ospd/ospd.yml and installer/ospd/packstack.yml contain:

	
	A set of extra vars [http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line] in YAML format
which the subcommand will use as the skeleton for its input

Options and Groups

An option can be defined with an options keyword followed by the dict of options. Every key in that dict is an option name, and value is another dict of option parameters.

options:
 debug:
 help: Run InfraRed in DEBUG mode
 short: d
 action: store_true

 verbose:
 help: Control Ansible verbosity level
 short: v
 action: count
 default: 0

Infrared transforms that to the CLI tool with the following arguments:

ir-command [-h] [-d] [-v]

optional arguments:
-h, --help show this help message and exit
-d, --debug Run InfraRed in DEBUG mode
-v, --verbose Control Ansible verbosity level

Options configuration

Every option in the specification can have the following keywords:

	short (infrared)

	help (argparse)

	required (argparse)

	default (argparse)

	choices (argparse)

	action (argparse)

	nargs (argparse)

	const (argparse)

	type (argparse)

	silent (infrared)

	required_when (infrared)

short

This section must contain a single letter defining the short name (beginning
with a single dash) of the current option.

help

argparse link: https://docs.python.org/dev/library/argparse.html#help

A brief description of what the argument does.

required

argparse link: https://docs.python.org/dev/library/argparse.html#required

Whether or not the command-line option may be omitted.

type

argparse link: https://docs.python.org/dev/library/argparse.html#type

The type to which the command-line argument should be converted.

	There are two groups of type supported by Infrared:

	
	control types: all the builtin types such as ‘str’, ‘int’ and other. Option with these types are used to control Infrared behavior and will not be put into the generated settings files. For example, ir-provisioner command has ‘debug’ control option.

	settings types (Value types): Value, YamlFile, Topology and other types. Options with these types will be put by Infrared into the settings files.

If type is not specified, Infrared will treat such option as ‘str’ control option.

Settings types

	Value

	YamlFile

	ListOfYamls

	Topology

	DictValue

Value

Simple value which will be put into the command settings. For example if for ‘provisioner’ command and the ‘virsh’ subcommand with options:

subparsers:
 virsh:
 options:
 host-address:
 type: Value
 help: 'Address/FQDN of the BM hypervisor'
 required: yes

Calling the ‘ir-provisioner’ cli tool:

ir-provisioner virsh --host-address myhost.domain.com

will produce the folloiwng settings in YAML format:

provisioner
 host:
 address: myhost.domain.com

This settings tree is passed to Ansible as extra-vars.

YamlFile

Loads the content of the specified YAML file into the settings.
For the option named ‘arg-name’ Infrared will look for YAML file into the following locations:

	<settings folder>/<command name>/<subcommand name>/arg/name/<file_name>

	<settings folder>/<command name>/arg/name/<file_name>

	./arg/name/<file_name>

For example, the ‘provisioner’ command and virsh ‘subcommand’ has the YamlFile option:

subparsers:
 virsh:
 options:
 topology-network:
 type: YamlFile

Command call:

ir-provisioner virsh --topology-network=default.yml

	Infrared will look for default.yml in the following locations:

	
	settings/provisioner/virsh/topology/network/default.yml

	settings/provisioner/topology/network/default.yml

	./topology/network/default.yml

Content of the default.yml will be put into the settings file:

provisioner:
 topology:
 network:
 # content of the default.yml will go there
 key1: value
 key2: value

Topology

Topology type is used to describe what nodes (vm’s) should be provisioned by the provisioner.

Topology value should be the list of nodes names and the number of nodes: <node name>:<node number>,<node2 name>:<node2 number>,.... For example:

ir-provisioner virsh --topology-nodes=undercloud:1,controller:2,compute:3
ir-provisioner virsh --topology-nodes=controller:3

Every node name maps to the appropriate YAML file (undercloud.yml. controller.yml, controller.yml) that should be stored in one the following locations:

	<settings folder>/<command name>/<subcommand name>/arg/name/<file_name>

	<settings folder>/<command name>/arg/name/<file_name>

	<settings folder>/<command name>/topology/<file_name>

	./arg/name/<file_name>

All the YAML files will be loaded into the settings under the node name key. ‘Amount’ key will be adjusted.

For example, for undercloud:1,controller:2,compute:3 value with option name topology-nodes the settings file will be:

provisioner:
 topology:
 nodes:
 undercloud:
 # content of the undercloud.yml will go there
 amount: 1
 controller:
 # content of the controller.yml will go there
 amount: 2
 compute:
 # content of the compute.yml will go there
 amount: 3

ListOfYamls

Specifies the list of YAML files to load into the settings.

Option value should be the comma separated string of files to load with or without yml extension. Single element in list is also accepted.

	Values examples:

	
	item1,item2,item3

	item1.yml

Search locations are the same as for the YamlFile type.

For example, for network,compute,volume value with option name tests, command tester and subcommand tempest, the settings file will be:

tester:
 tests:
 network:
 # content of the network.yml will go there

 compute:
 # content of the compute.yml will go there

 volume:
 # content of the volume.yml will go there

DictValue

Specifies the value which should be interpreted as a dictionary value in the settings.

DictValue should be specified in the format: option1=value1;option2=value;option3=value3

Consider the following example on how to add the DictValue option into a spec.

subparsers:
 virsh:
 options:
 my-dict-option:
 type: DictValue
 help: 'Sample dict'

Calling the cli tool:

ir-provisioner virsh --my-dict-option=option1=value1;key2=value2

will produce the following dict tree in YAML format:

provisioner
 my:
 dict:
 options:
 option1: value1
 key2: value2

This settings tree is passed to Ansible as extra-vars.

Types extension

Settings types can be extended by adding user class to the clg.COMPLEX_TYPES dictionary. Complex types should implement the clg.ComplexType interface:

import clg
from datetime import datetime

class DateValue(ComplexType):

 def resolve(self, value):
 try:
 return datetime.strptime(value, '%d/%m/%Y')
 except Exception as err:
 raise clg.argparse.ArgumentTypeError(err)

COMPLEX_TYPES['DateValue'] = DateValue

proceed with clg usage
...

YAML configuration is then can look like:

options:
 date:
 help: Date value
 type: DateValue
...

Control types can be extended by adding callable objects which accept one
argument (value) to the clg.TYPES dictionary.

default

argparse link: https://docs.python.org/dev/library/argparse.html#default

The value produced if the argument is absent from the command line.

choices

argparse link: https://docs.python.org/dev/library/argparse.html#choices

A container of the allowable values for the argument.

action

argparse link: https://docs.python.org/dev/library/argparse.html#action

The basic type of action to be taken when this argument is encountered at the
command line.

Infrared provides two actions which allows to read options from INI files and generate simple configuration files.

options:
 from-file:
 action: read-config
 help: reads arguments from file.
 generate-conf-file:
 action: generate-config
 help: generate configuration file with default values

nargs

argparse link: https://docs.python.org/dev/library/argparse.html#nargs

The number of command-line arguments that should be consumed.

const

argparse link: https://docs.python.org/dev/library/argparse.html#const

Value in the resulted Namespace if the option is not set in the command-line
(None by default).

silent

Specifies which required arguments should become no longer required when this option is set.

options:
 image:
 type: YamlFile
 help: 'The image to use for nodes provisioning. Check the "sample.yml.example" for example.'
 required: yes
 ...
 cleanup:
 action: store_true
 help: Clean given system instead of running playbooks on a new one.
 silent:
 - "image"
...

In that example the image will no longer be required when cleanup option is set.

required_when

Specifies condition when options should became required.

Condition should be specified in form <option_name> == <value>.

options:
 images-task:
 type: Value
 choices: [import, build, rpm]
 default: rpm

 images-url:
 type: Value
 help: Specifies the import image url. Required only when images task is 'import'
 required_when: "images-task == import"

Groups

If options belong to one area or connected somehow, they can be grouped:

groups:
 - title: Hypervisor
 options:
 host-address:
 type: Value
 help: 'Address/FQDN of the BM hypervisor'
 required: yes
 host-user:
 type: Value
 help: 'User to SSH to the host with'
 default: root
 host-key:
 type: Value
 help: "User's SSH key"
 required: yes

Shared groups

Shared groups allow to include predefined options groups into different commands or subcommands

Shared groups should be defined in the settings/base.spec file or in the command spec file:

shared_groups:
 - title: Inventory hosts options
 options:
 inventory:
 help: Inventory file
 type: str
 default: hosts

 - title: Common options
 options:
 dry-run:
 action: store_true
 help: Only generate settings, skip the playbook execution stage
 input:
 action: append
 type: str
 short: i
 help: Input settings file to be loaded before the merging of user args

Shared group can be included into the command spec file with the include_groups directive:

include_groups: ["Debug Options"]

For a subcommand the include_groups should be defined under the subparsers section:

subparsers:
 virsh:
 include_groups: ["Ansible options", "Inventory options", "Common options", "Configuration file options"]

Options sources

Infrared is not limited with the CLI options only.
We can pass arguments to the plugin using the following approaches:

	through the CLI options

	through INI files using the --from-file argument or any other argument with action: read-config attribute in specification

	through environment variables

	Infrared resolves option value in the next order:

	
	If option value is provided by CLI, use that value.

	Else use value from INI file if it is defined there.

	Else use environment variable (with the same name as an option name, but capitalized and ‘-‘ replaced with ‘_’ (for example, ‘arg-name’ will be transformed to ARG_NAME env variable).

	Else use value specified by the default keyword in the spec file.

	If default value is not specified, option will not be defined.

Consider the following subcommand specification as an example:

subparsers:
 testcommand:
 groups:
 - title: common options
 options:
 from-file:
 action: read-config
 help: reads arguments from file.

 - title: test options
 options:
 option1:
 type: Value
 option2:
 type: Value
 option3:
 type: Value

The INI file with the settings:

[testcommand]
option1=ini_value1
option2=ini_value2

Invoke subcommand with the following options:

OPTION2=env_value2 OPTION3=env_value3 ir-somecomand testcommand --from-file=test.ini --option1=cli_value1

	This will produce the follwing arguments:

	
	option1 = cli_value1

	option2 = ini_value2

	option3 = env_value3

Contact Us

Team:

	Tal Kammer
	tkammer@redhat.com

	Yair Fried
	yfried@redhat.com

GitHub:

Issues are tracked via GitHub [https://github.com/rhosqeauto/InfraRed/issues]. For any concern, please create a new issue [https://github.com/rhosqeauto/InfraRed/issues/new].

Contributors Guide

Sending patches

Changes to project are accepted via review.gerrithub.io [https://review.gerrithub.io/#/q/project:rhosqeauto/InfraRed].
For that you need to be member of our group rhosqeauto-core on gerrithub,
ask any of the current members about it.

You can use git-review (dnf/yum/pip install).
To initalize in the directory of InfraRed execute git review -s.
Every patch needs to have Change-Id in commit message
(git review -s installs post-commit hook to automatically add one).

For some more info about git review usage, read GerritHub Intro [https://review.gerrithub.io/Documentation/intro-quick.html#_the_life_and_times_of_a_change] and OpenStack Infra Manual [http://docs.openstack.org/infra/manual/developers.html].

Release Notes

v1.1.0

New Features

	Added support for OSPD on Bare-Metal machines (documentation pending).

	Move to GerritHub

	Improve Documentaion

	Unit-Testing via tox

	
	OSPD

	
	Internal Swift storage backend

	Older OverCloud versions with New UnderCloud (OSP-d #8 and above).
For example: Deploy OverCloud of OSP #7 with OPS-d #8 UnderCloud

	
	Scale

	
	Internal Ceph

	Internal Swift

	Compute

	Collect logs - ansible playbook to grab required data and logs from all nodes post run. Allows to debug the setup even after it was destroyed:

ansible-playbook -i hosts -e @SETTINGS_YAML_FILE playbooks/collect-logs.yml

Jobs can now ship logs to Logstash cluster

	Help for arguments of type YamlFileArgumet lists available files from default locations.

	Reprovision via Foreman and IPMI

	Reprovision and reserve via Beaker

	Configure multiple settings trees. Will look for file arguments in multiple settings directories as listed in infrared.cfg

	
	Generate better config files:

	
	Put all the required arguments to the generated config ini file

	If default value is not provided - put the placeholder for that parameter in ini file

	Resolve only current spec arguments.

	Infrared allows to use ir-* command in two steps:

ir-* –generate-conf-file=file.ini
ir-* –from-file=file.ini

	Use existing image snapshots with virsh provisioner (faster than building the images)

	openstack provisioner accepts private DNS server address.

	Add Ansible tags to ospd workflow so advanced users can ivoke partial ospd tasks (undercloud, introspection, overcloud, etc...)

	Add Tempest tester:

ir-tester tempest –help

	Customized hostnames for controller nodes

	Adds support for OSP #10

	OSPD post-install actions no longer invoked during ir-installer ospd run. Need to be explictly invoked via advanced Ansible call:

ansible-playbook -i hosts -e @SETTINGS_YAML_FILE playbooks/installer/ospd/post_install/ACTION.yml

	Configure fencing of overcloud nodes (virsh only) with post-install playbook.

	Invetory files created for each invocation (hosts-provisioner and hosts-installer are created, instead of overwriting the same hosts-$USER file.)

Bug Fixes

	SSH to OverCloud nodes:
OSPD reprovisions OverCloud machines with new addresses and credentials.
Final stage of install uses built-in openstack module to get OverCloud info from UnderCloud (nova list) and recreate invetory and ssh config files.

	
	Version conflicts:

	
	pin Babel

	Removed configure module

	Blacklist Ansible 2.1.0

	pin shade

	Default config file is up to date

	
	Packstack:

	
	Added All-In-One (aio.yml) topology support

	Fixed network tasks on controller (No longer support dedicated network nodes)

	Collect Logs: Avoid archiving virsh machines on virthost node.

	Improve lookup: No longer fails when there are multiple visits to the same key in the lookup

	Faster lookup with unittest.

	virsh provisioner no longer fails if sshpass is not installed

	Remove “sample” files from genertad config files.

	Resolve ~ (expanduser) on extra-vars file input (--extra-vars @~/my/file)

	Informative failure message for bad topology syntax

	Single default inventory file for all ir-* tools

	Beaker - Proper Ansible failure message when ca_cert file is missing

	Remove empty placeholer file for rhos-8.0 workarounds

	openstack provisioner no longer registers the same IP address for instances of the same node

	Fix internal ceph backend: glance image-create no longer fails with ceph backend

	Fix merging lists in inpute files.

	rhos-release should pin latest version

	Verify that overcloudrc file is created after overcloud deployment succeeds

	Install python-virtualenv on the undercloud (required for shade)

	Add ipv6 support for virsh external network

	Cast the string value of product to int

Index

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to InfraRed's documentation!

 		Introduction

 		Quickstart

 		Basic Usage Example

 		Provisioning

 		Installing

 		OSPD Quickstart

 		Setup

 		Supported distros

 		Prerequisites

 		Virtualenv

 		Installation

 		Configuration

 		Additional settings

 		Private settings

 		Virthost machine

 		Using InfraRed

 		General workflow

 		Passing parameters

 		Provisioners

 		Beaker

 		Foreman

 		Openstack

 		Virsh

 		Installers

 		Packstack

 		OpenStack director

 		Testers

 		Tempest

 		Scripts

 		Archive

 		Plugins

 		Add new Plugins

 		Plugin Input

 		External setting trees

 		InfraRed input arguments

 		Extra-Vars

 		Advanced features

 		Tags

 		Breakpoints

 		OverCloud Image Update

 		Custom repositories

 		Custom/local tempest tester

 		Scalability

 		UnderCloud testing

 		Virthost packages/repo requirements

 		Virsh

 		UEFI mode related binaries

 		Specifications

 		Plugin Input

 		Commands and subcommands

 		Infrared settings structure

 		Options and Groups

 		Options configuration

 		Groups

 		Shared groups

 		Options sources

 		Contact Us

 		Team:

 		GitHub:

 		Contributors Guide

 		Sending patches

 		Release Notes

 		v1.1.0

 		New Features

 		Bug Fixes

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

